Wanshiyishiwang
Wanshiyishiwang

will come, and, O Bwana, then will they surely get us,

source:rnaissuing time:2023-12-01 09:10:08

But beyond his emoluments as a partner in the invention, Alfred Vail had no recompense. Morse, perhaps, was somewhat jealous of acknowledging the services of his 'mechanical assistant,' as he at one time chose to regard Vail. When personal friends, knowing his services, urged Vail to insist upon their recognition, he replied, 'I am confident that Professor Morse will do me justice.' But even ten years after the death of Vail, on the occasion of a banquet given in his honour by the leading citizens of New York, Morse, alluding to his invention, said: 'In 1835, according to the concurrent testimony of many witnesses, it lisped its first accents, and automatically recorded them a few blocks only distant from the spot from which I now address you. It was a feeble child indeed, ungainly in its dress, stammering in its speech; but it had then all the distinctive features and characteristics of its present manhood. It found a friend, an efficient friend, in Mr. Alfred Vail, of New Jersey, who, with his father and brother, furnished the means to give the child a decent dress, preparatory to its' visit to the seat of Government.'

will come, and, O Bwana, then will they surely get us,

When we remember that even by this time Vail had entirely altered the system of signals, and introduced the dot-dash code, we cannot but regard this as a stinted acknowledgment of his colleague's work. But the man who conceives the central idea, and cherishes it, is apt to be niggardly in allowing merit to the assistant whose mechanical skill is able to shape and put it in practice; while, on the other hand, the assistant is sometimes inclined to attach more importance to the working out than it deserves. Alfred Vail cannot be charged with that, however, and it would have been the more graceful on the part of Morse had he avowed his indebtedness to Vail with a greater liberality. Nor would this have detracted from his own merit as the originator and preserver of the idea, without which the improvements of Vail would have had no existence. In the words of the Hon. Amos Kendall, a friend of both: 'If justice be done, the name of Alfred Vail will for ever stand associated with that of Samuel F. B. Morse in the history and introduction into public use of the electro-magnetic telegraph.'

will come, and, O Bwana, then will they surely get us,

Professor Morse spent his declining years at Locust Grove, a charming retreat on the banks of the River Hudson. In private life he was a fine example of the Christian gentleman.

will come, and, O Bwana, then will they surely get us,

In the summer of 1871, the Telegraphic Brotherhood of the World erected a statue to his honour in the Central Park, New York. Delegates from different parts of America were present at the unveiling; and in the evening there was a reception at the Academy of Music, where the first recording telegraph used on the Washington to Baltimore line was exhibited. The inventor himself appeared, and sent a message at a small table, which was flashed by the connected wires to the remotest parts of the Union, It ran: 'Greeting and thanks to the telegraph fraternity throughout the world. Glory to God in the highest, on earth peace, goodwill towards men.'

It was deemed fitting that Morse should unveil the statue of Benjamin Franklin, which had been erected in Printing House Square, New York. When his venerable figure appeared on the platform, and the long white hair was blown about his handsome face by the winter wind, a great cheer went up from the assembled multitude. But the day was bitterly cold, and the exposure cost him his life. Some months later, as he lay on his sick bed, he observed to the doctor, 'The best is yet to come.' In tapping his chest one day, the physician said,' This is the way we doctors telegraph, professor,' and Morse replied with a smile, 'Very good--very good.' These were his last words. He died at New York on April 2, 1872, at the age of eighty-one years, and was buried in the Greenwood Cemetery.

Sir William Thomson, the greatest physicist of the age, and the highest authority on electrical science, theoretical and applied, was born at Belfast on June 25, 1824. His father, Dr. James Thomson, the son of a Scots-Irish farmer, showed a bent for scholarship when a boy, and became a pupil teacher in a small school near Ballynahinch, in County Down. With his summer earnings he educated himself at Glasgow University during winter. Appointed head master of a school in connection with the Royal Academical Institute, he subsequently obtained the professorship of mathematics in that academy. In 1832 he was called to the chair of mathematics in the University of Glasgow, where he achieved a reputation by his text-books on arithmetic and mathematics.

William began his course at the same college in his eleventh year, and was petted by the older students for his extraordinary quickness in solving the problems of his father's class. It was quite plain that his genius lay in the direction of mathematics; and on finishing at Glasgow he was sent to the higher mathematical school of St. Peter's College, Cambridge. In 1845 he graduated as second wrangler, but won the Smith prize. This 'consolation stakes' is regarded as a better test of originality than the tripos. The first, or senior, wrangler probably beat him by a facility in applying well-known rules, and a readiness in writing. One of the examiners is said to have declared that he was unworthy to cut Thomson's pencils. It is certain that while the victor has been forgotten, the vanquished has created a world-wide renown.

While at Cambridge he took an active part in the field sports and athletics of the University. He won the Silver Sculls, and rowed in the winning boat of the Oxford and Cambridge race. He also took a lively interest in the classics, in music, and in general literature; but the real love, the central passion of his intellectual life, was the pursuit of science. The study of mathematics, physics, and in particular, of electricity, had captivated his imagination, and soon engrossed all the teeming faculties of his mind. At the age of seventeen, when ordinary lads are fond of games, and the cleverer sort are content to learn without attempting to originate, young Thomson had begun to make investigations. The CAMBRIDGE MATHEMATICAL JOURNAL of 1842 contains a paper by him--'On the uniform motion of heat in homogeneous solid bodies, and its connection with the mathematical theory of electricity.' In this he demonstrated the identity of the laws governing the distribution of electric or magnetic force in general, with the laws governing the distribution of the lines of the motion of heat in certain special cases. The paper was followed by others on the mathematical theory of electricity; and in 1845 he gave the first mathematical development of Faraday's notion, that electric induction takes place through an intervening medium, or 'dielectric,' and not by some incomprehensible 'action at a distance.' He also devised an hypothesis of electrical images, which became a powerful agent in solving problems of electrostatics, or the science which deals with the forces of electricity at rest.

Related columns:government